

Chemical Instrument ERH to EMC Conversion

Ref:ERHtoEMC_Model_DS_E

Evaluation of isotherm's Model

Bradley's equation has been reported to fit the experimental data for proteins such as myosin, ovalbumin etc. (Palnitkar and Heldman, 1971)

The BET equation is used most frequently to characterize the monolayer water.

GAB(Guggenheim,Anderson and Brunauer) equation is considered one of the best equations for fitting siotherms of many food materials. It does require five experimental data points, but is good up to aw 0.94.

Oswin's equation is a series expansion for S-shaped curves.

Henderson's equation is good for describing globular proteins(Okos et al., 1992).

Ferro Fontan et al., (1982) investigated the Hailwood and Horrobin isotherm equation, which was applied to collagen and fish protein concentrates.

Equation used in MS2100 Instrument's Software

1. Chen-Clayton Equation (CHCE):

$$r.h. = \exp\left[-\frac{C_1}{T_K^{C_2}}\exp\left(-C_3 T_K^{C_4} M\right)\right]$$

EMC=-log(-pow(Tk,C2)* log(WaterActivity)/C1)/(C3*pow(Tk,C4))

2. Modified-Chung-Pfost Equation (MCPE):

$$r.h. = \exp\left[-\frac{C_1}{T+C_2}\exp(-C_3M)\right]$$

EMC=-log(-log(WaterActivity)* (Temperature+C2)/C1)/C3

3. Modified-Halsey Equation (MHAE):

$$r.h. = \exp(-\exp(C_1 + C_2 T)M^{-C_3})$$

EMC=exp(- log(-log(WaterActivity)/ exp(C1+C2*Temperature))/ C3)

4. Modified-Henderson Equation (MHEE):

$$r.h. = 1 - \exp\left[-C_1(T + C_2)M^{c_3}\right]$$

EMC=exp(log(-log(1-WaterActivity)/(C1*(Temperature+C2)))/C3)

5. Modified-Oswin Equation (MOSE):

$$r.h. = \frac{1}{1 + \left(\frac{C_1 + C_2 T}{M}\right)^{C_3}}$$

EMC=(C1+C2*Temperature)/ exp((1- WaterActivity)/ (WaterActivity*C3))

6. Strohman-Yoerger Equation (STYE):

$$r.h. = \exp[C_1 \exp(-C_2 M) \ln P_s - C_3 \exp(-C_4 M)]$$

*Not available

7. Brunauer-Emmett-Teller (BET)

$$X_{eq} = \frac{(XM \cdot C \cdot a_w) \left[1 - (n+1) \cdot a_w^{-n} + n \cdot a_w^{n+1}\right]}{(1 - a_w) \left[1 + (C-1) a_w^{--C \cdot a_w^{-n+1}}\right]} \qquad \qquad Xe = \frac{(X_m a_w^{-} C)(1 - (n+1)a_w^{-n} + na_w^{-n+1})}{(1 - a_w)[1 + (C-1)a_w^{--C} - a_w^{-n+1})]}$$

C1=3.9478; C2=0.1058;C3=43.76; (40C°)

8.BET Linear

$$X_{eq} = \frac{a_w \cdot XM \cdot C}{(1 - a_w) \cdot (1 + (C - 1) \cdot a_w)}$$

EMC= WaterActivity*C1*C2/((1- WaterActivity)*(1+(C2-1)* WaterActivity)) Note: C1=Xm; C2=C; Initial Data: C1= 0.104; C2= 0.876; (30C°)

9. Guggenheim-Anderson-deBoer (GAB)

$$X_{eq} = \frac{XM \cdot C \cdot K \cdot a_{w}}{(1 - K \cdot a_{w}) \cdot (1 - K \cdot a_{w} + C \cdot K \cdot a_{w})} \qquad Xe = \frac{(C - 1).X_{m}.K.a_{w}}{1 + (C - 1).K.a_{w}} + \frac{X_{m}.K.a_{w}}{1 - a_{w}K}$$
$$c = 0.00218e^{\left(\frac{2520.3}{T}\right)}$$
$$c=0.00218^{e^{\left(\frac{2520.3}{T}\right)}}$$
$$k = 0.19423e^{\left(\frac{435.7}{T}\right)}$$

k=0.19423 exp(435.7/Tk) = C3*exp(435.7/Tk) EMC=C1*C2*exp(2520.3/Tk)*C3*exp(435.7/Tk)* WaterActivity /((1- WaterActivity)*(1-C3*exp(435.7/Tk)* WaterActivity +C2*exp(2520.3/Tk)* C3*exp(435.7/Tk)* WaterActivity)); Note: C1=Xm=0.0598; C2=0.00218;C3= 0.19423;

Table 1. Estimated Values and Regression Coef	ficients for G.A.B. Model
---	---------------------------

T /°C	$X_m/\text{mc}\cdot(d.b.)$	c/-	k /-	r ²
25	0.0598	11.85	0.82	0.998
40		5.67	0.80	0.995
55		4.27	0.75	0.996
70		3.87	0.68	0.991

10. LANGMUIR

$$X_{eq} = \frac{XM \cdot C \cdot a_{w}}{1 + C \cdot a_{w}} \qquad \text{Xe} = \frac{\text{A.B.a}_{\text{W}}}{1 + a_{\text{W}}.\text{B}}$$

Xe=C1* C2*WaterActivity/(1+C2* WaterActivity) Note: C1=Xm; C2=C; Initial Data: C1=1011.181; C2= 0.00059;

Useful data colected for reference

Data from literature: "DESORPTION ISOTHERMS OF CALENDULA OFFICINALIS L" Franceli da Silva1, Kil Jin Park 1, Pedro Melillo Magalhães 2 and Marina Pozitano 1.

Table 2: The sorption isotherm model				
NAME OF THE MODEL	MODEL			
BET	$X_{eq} = \frac{(XM \cdot C \cdot a_{w}) \cdot \left[1 - (n+1) \cdot a_{w}^{n} + n \cdot a_{w}^{n+1}\right]}{(1 - a_{w}) \cdot \left[1 + (C - 1) \cdot a_{w}^{n} - C \cdot a_{w}^{n+1}\right]}$	(1)		
BET LINEAR	$\boldsymbol{X}_{eq} = \frac{\boldsymbol{a}_w \cdot \boldsymbol{X} \boldsymbol{M} \cdot \boldsymbol{C}}{(1 - \boldsymbol{a}_w) \cdot (1 + (\boldsymbol{C} - 1) \cdot \boldsymbol{a}_w)}$	(2)		
GAB	$X_{eq} = \frac{XM \cdot C \cdot K \cdot a_{w}}{(1 - K \cdot a_{w}) \cdot (1 - K \cdot a_{w} + C \cdot K \cdot a_{w})}$	(3)		
HALSEY	$X_{eq} = XM \left(\frac{-A}{\log(a_w)}\right)^{1/n}$	(4)		
HENDERSON	$X_{eq} = \left(-\frac{\log(1-a_w)}{K}\right)^{1/n}$	(5)		
LANGMUIR	$X_{eq} = \frac{XM \cdot C \cdot a_w}{1 + C \cdot a_w}$	(6)		
OSWIN	$X_{eq} = A \left(\frac{a_w}{1 - a_w} \right)^B$	(7)		
PELEG	$X_{eq} = K_1 a_w^{n_1} + K_2 a_w^{n_1}, n_1 < 1 \in n_2 > 1$	(8)		
CHUNG & PFOST	$X_{eq} = \left(\frac{-1}{B}\right) \cdot \log\left(\frac{\log(a_w) \cdot (R \cdot T)}{-A}\right)$	(9)		
HENDERSON	$X_{eq} = \left(-\frac{\log\left(1-a_{w}\right)}{K \cdot (T+C)}\right)^{1/n}$	(10)		

fodal	Constants B2 and arrest	TEMPERATURE			
Model	Constants, R2 and error	30 °C	45 °C	60 °C	
ET	XM	0.104	70.324	285.428	
	С	0.876	0.001	0.001	
	Ν	107.070	2.016	0.875	
	R2	0.955	0.979	0.944	
	E (%)	34.99	23.28	28.37	
ET LINEAR	XM	0.104	0.042	0.039	
	С	0.876	30.833	22.77	
	R2	0.955	0.971	0.990	
	E (%)	34.99	11.95	9.23	
AB	XM	0.038	0.062	0.033	
	С	7.11 x 10 ⁵	6.914	41.062	
	Κ	1.175	0.889	1.072	
	R2	0.993	0.986	0.993	
	E (%)	7.95	16.18	6.76	
HALSEY	A	0.050	0.044	0.028	
	В	1.172	1.127	1.236	
	R2	0.972	0.988	0.988	
	E (%)	280.68	359.50	419.44	
GMUIR	XM	1096.117	734.300	146.517	
	С	0.000	0.000	0.001	
	R2	0.831	0.950	0.943	
	E (%)	38.53	26.78	28.77	
SWIN	A	0.098	0.094	0.079	
	В	1.021	0.551	0.518	
	R2	0.955	0.988	0.981	
	E (%)	34.85	14.50	15.82	
ELEG	K1	0.135	0.013	0.025	
	N1	0.492	-0.285	-0.034	
	K2	5.592	0.293	0.216	
	N2	11.490	1.946	2.129	
	R2	0.993	0.997	0.999	
	E (%)	9.40	5.71	3.36	

 R^2 – determination coefficient.

Data from literature: "APPLICATION OF MATHEMATICAL MODELS OF TWO AND THREE PARAMETERS IN THE PREDICTION OF SORPTION ISOTHERMS FOR INGÁ (Ingáedulis) PULP" Franceli da Silva1, Kil Jin Park, Pedro Melillo Magalhães and Marina Pozitano.

Model	Equation	
Anderson	$Xe = \frac{A.B.C.a_{w}}{1 + (B - 2).C.a_{w} + (1 - B).C^{2}.a_{w}}$	(1)
BET modified	$Xe = \frac{(X_{m}a_{w}C)(1 - (n + 1)a_{w}^{n} + na_{w}^{n+1})}{(1 - a_{w})[1 + (C - 1)a_{w} - Ca_{w}^{n+1})]}$	(2)
GAB	$Xe = \frac{(C-1).X_{m}.K.a_{w}}{1+(C-1).K.a_{w}} + \frac{X_{m}.K.a_{w}}{1-a_{w}K}$	(3)
Langmuir	$Xe = \frac{A.B.a_{w}}{1 + a_{w}.B}$	(4)
Oswin	$Xe = A.[a_w /(1 - a_w)]^B$	(5)
Smith	$Xe = A - B.\ln(1 - a_w)$	(6)

Table 2. Estimated values of several models parameters, regression coefficients (R^2) and E (%).

Models	Parameters	ingá pulp		
		40 °C	60 °C	
Anderson	А	0.2432	4.3718	
	В	2.063	0.2762	
	С	1.196	0.3658	
	$R^2, (E\%)$	0.993, (1.78)	0.975, (1.96)	
BET modified	Xm	3.9478	7.8908	
	Ν	43.76	51.947	
	С	0.1058	0.0537	
	R ² , (E%)	0.993, (1.68)	0.988, (1.79)	
GAB	Xm	0.2163	0.1951	
	С	3.6914	5.3119	
	K	0.7516	0.7139	
	R ² , (E%)	0.993, (1.22)	0.990, (1,45)	
Langmuir	А	1011.181	225.051	
-	В	0.00059	0.0229	
	R ² , (E%)	0.950, (2.33)	0.968 , (2.01)	
Oswin	А	0.249	0.228	
	В	0.3451	0.3084	
	R ² , (E%)	0.970, (2.56)	0.965, (2.67)	
Smith	А	0.0899	0.0971	
	В	0.2077	0.1622	
	R ² , (E%)	0.982, (2.10)	0.971, (2.79)	

Data from literature:" Comparison and Selection of EMC/ERH Isotherm Equations for Drying and Storage of Grain and Oilseed"

Da-Wen Sun, Department of Agricultural and Food Engineering, University College Dublin, National University of Ireland, Earlsfort Terrace, Dublin 2, Ireland. Tel: +353-1-7067493; Fax: +353-1-4752119; Email: dawen.sun@ucd.ie

1. Chen-Clayton Equation (CHCE):

$$r.h. = \exp\left[-\frac{C_1}{T_K^{C_2}} \exp\left(-C_3 T_K^{C_4} M\right)\right]$$
(1)

2. Modified-Chung-Pfost Equation (MCPE):

$$r.h. = \exp\left[-\frac{C_1}{T+C_2}\exp(-C_3M)\right]$$
(2)

3. Modified-Halsey Equation (MHAE):

$$r.h. = \exp(-\exp(C_1 + C_2 T)M^{-C_3})$$
(3)

4. Modified-Henderson Equation (MHEE):

$$r.h. = 1 - \exp\left[-C_1(T + C_2)M^{C_3}\right]$$
(4)

5. Modified-Oswin Equation (MOSE):

$$r.h. = \frac{1}{1 + \left(\frac{C_1 + C_2 T}{M}\right)^{C_3}}$$
(5)

6. Strohman-Yoerger Equation (STYE):

$$r.h. = \exp[C_1 \exp(-C_2 M) \ln P_s - C_3 \exp(-C_4 M)]$$
(6)

Data Sets	Best Fitted Equation Coefficients			RSS	SEE	MRD	
	C1	C_2	C3	C_4			
Wheat: Modified-Chung-Pfost Equation							
Adsorption	401.52	73.607	0.14974		1.1950	0.0558	0.16423
Desorption	545.25	64.047	0.17316		2.7264	0.0669	0.59591
Total	478.87	64.933	0.16558		4.8434	0.0662	0.55857
Shelled Corn	: Modified	l-Oswin Equati	on				
Adsorption	13.1882	-0.058628	2.98726		0.19965	0.04013	0.06152
Desorption	13.9005	-0.076819	2.96243		1.71130	0.06093	0.10346
Total	13.7738	-0.074127	2.96856		1.93735	0.05740	0.09660
Rice: Strohm	nan-Yoerg	er Equation					
Adsorption	2.60693	0.22350	8.48875	0.19608	0.83505	0.06527	0.10577
Desorption	1.03151	0.13755	7.73688	0.17268	2.77199	0.07042	0.12657
Total	1.15668	0.15345	7.78269	0.17828	4.17767	0.07419	0.13202
Rapeseed: Modified-Halsey Equation							
A 1	0.7010	0.01/0 10-4	1.6605		0.07020	0.05477	0.00077
Adsorption	2.7812	-8.9162x10 ⁻⁴	1.6685		0.86939	0.05477	0.09866
Desorption	2.8989	-1.4596x10 ⁻²	1.5454		3.10511	0.09112	0.17269
Total	2.8380	-9.6915x10 ⁻³	1.5845		4.38937	0.08124	0.14770

Table 5. The best fitted coefficients for adsorptive, desorptive and average isotherm equations.