

Portable Gas Analyzer Model:pGas4820-VOCs

Portable Industry Gas Analyzer

____Tunable Diode Laser Spectroscopy
____Qualitative and Quantitative Analysis for Organic Vapors

Ref: pGas4820_VOCs_DS_E Version:2005-02-03

Information: http://www.fullsense.com/Products/Gas/Portable/pGas4820_IntE.pdf

- High selectivity from gases mixture is expected, None of interferences of water vapor
- More gases detection is supported
- Dissolved gas detect is supported with DGA software
- Intelligent Analysis Based on Powerful CPU
- Rapid Test in Seconds
- Sub-ppm or ppm detection of over 120 gases
- 100 frame Data log
- LCD 8x20 Display, Backlight Available
- RS232/485 Communication
- Full Function Keypad Operation
- Memo Driven Software, Easy to use; easy to train new operators
- Lightweight and easily portable
- Long life sensor designed
- Free of maintenance
- Versatile and up-gradable to suit your needs(Spectral Scanning upgrade permits collection of spectral fingerprint of unknowns, for further in-depth analysis and identification)
- ISO 14000 / ISO 14001 ENVIRONMENTAL MANAGEMENT Analyzer

High reliable,

Free from Interferences, Professional to Industrial Analysis

p-Gas4810 was special designed for industry general gas analysis. It was based on high resolution TDLAs MFS- NIR spectroscopy technology. The resolution of the spectrum is <10nm between 350-470nm; <3-5nm between 400-700nm;<14nm between 700-800nm;<0.4nm between 760-980nm;<3nm between 1060nm; <20MHz between 1200-1580nm; <20MHz between 1400-1650nm; <30MHz between 1400-2050nm, <80MHz between 1.65-2.4um;

Applications:

- Industry gas analysis.
- Leak Detection for process maintenance
 Using a leak detection probe, you can set up the pGas4810-MP4L23-OPL10-PSED to check for leaks around many types of process equipment.
- Groundwater and soil contamination assessment
- Tanker loading emissions monitoring
- Occupational hygiene analysis
- Detection of leaks from storage facilities
- Vehicle emissions
- Stack Emissions Monitoring
- Atmosphere Analysis. pGas4810- MP4-OPL10k-ASM-HAP is for trace pollutants analysis.
- Environ monitoring, and urban air pollution surveys. pGas4810-MP4-OPL36-ASM-EAP is the design for popular environ hazardous gases analysis.
- Odor investigations and Effluvium Detect
- Assessment and quantification of indoor air quality
- Indoor Air Quality Studies
 - The pGas4810-MP4-OPL36-ASM-EAP makes precise spot measurements for compounds such as CO2, CO, formaldehyde, or organic vapors.
- Occupational Air Quality

- Acid gases and odorous species SO₂, NO₂, H₂S and NO
- Light hydrocarbons and combustion products
- Industrial Hygiene

Real-time detection of vapors in job environments promotes safe work habits.

pGas4810-MP4-OPL10k-ASM-HAP analyzers monitor at typical government-regulated levels.

Waste Anesthetic Gases

Service technicians can identify leaks on anesthetic delivery systems by using the pGas4810-MP2-OPL1-VAMCs Gas Analyzer as a part of Preventative Maintenance (PM) work.

Emergency Response Analysis

The pGas4810- MP4-OPL36-PSED assists emergency response personnel in qualifying hazardous spills and emissions.

Fume Hood/Tracer Gas Analysis

When the handling of toxic substances is performed in fume hoods, worker safety can be jeopardized. The pGas4810- MP4-OPL10-PSED serves as an effective monitor for evaluating fume containment of laboratory hoods.

- Air contaminants detection of scuba diving tank, nuke.
- Air contaminants detection of aerostat.
- Atmosphere analysis of universe space
- War fairs, chemical agents, bio agents detection
- Drugs detection
- Public safety monitor, explosive and hazardous materials detection

Instrumental Functions

- LCD 320×240 Graphic LCD Display, with backlight
- RS232/RS485 serial port. Supporting STIMcom / Modbus communication, and printer; USB support in new version
- Non-volatile memory supported data store and read out, or output to computer
- Built-in Sampling pump included, and suitable sample pre-process assembly
- Built-in alarm include LED flash, LCD indication, and Beep; Alarm limit setup supported, default to TWIN standard
- Sampling gun with filter/trap for dusts and condensed water drain.
- System diagnostic
- Protection against accidental turn-off
- Over-range protection for all installed sensors
- Storage protection for sensors
- Flexible tubing for re-configuration
- User complete calibration, zero-adjust and essential data setup support
- Interfering gas compensation select
- Basal humidity and temperature detected for compensation and controlled for normal test. Over limit alarm support
- Rechargeable batteries to provide 100 hours of continuous operation
- 15-24 V DC powered. Local AD to DC adapter supported
- Basal intrinsically safe system, except parts of pump and heater. Special order for class 1 div. 1, groups a, b, c and d and class 2 div. 1, groups e, f and g for use in hazardous areas recommended.

Specifications

Electronic unit: BD6, ADC resolution: 0.0015%FS

Protection against electromagnetic and radio frequencies interference Maintenance interval: Recommended every 3 months (no consumables needed) Calibration: In situ with flow through cell, or in separate calibration device, Identification set by high pure gas only.

Storage or standby would not decay the system. Long life supported.

Detector Type

Single beam near infrared spectrophotometer

Optics Bandwidth: 0.1 to 0.001nm;

Refer to Laser list

Dynamic range: General 1000 to 100000 :1

Accuracy: 2% of reading or LDL whichever is great

Pump Flow Rate 1-15 liters/ minute

Analysis Time 1-20s;

Alarms User Definable

Professional Chemical Analyzer Service /BigDipper Technochem Institute, Beijing China

Readout 8 line x 40 character LCD

Start up: 3mins

Response Time T90:1-10 seconds to 90% of final reading

Optical Path length OPL1: 0.5m to 1.00m

(OPL)

OPL10: 10m OPL36k:36km

OPL could be expanded to kilometers by Perrot Cell for trace gas analysis.

Sample Cell Volume 2.0 liters

Instrument span drift: < 4% of measuring range between maintenance intervals

Instrument zero drift: Negligible (<2% of measuring range between maintenance intervals)

Sampling pressure: Atmosphere ±20% (Standard sampling condition)

Sampling temperature: -10 °C to 50 °C(Standard sampling condition)

Battery Internal, rechargeable NiCd. 12V nominal;

2 Ah Capacity. Recharge time 4 to 8 hours Continuous running time: >24Hr/ each charge;

Standby time: 7 days

 Output
 0-2.5Vdc, Serial RS232 or RS485

 Dimensions
 553mm (W) x 365mm (H) x 193mm (D)

Mass 15 kg

Intrinsic Safety User specified models are certified for CENELEC, Groups IIC, Zone 1 and 2

Certifications ETL (Class I, Div 1, Groups B, C, & D, Temperature Class T4; ETL-C (Class I, Div. 1,

Groups, B, C, & D, Temperature Class T4); CENELEC (EEx ib d IIB + H2 T4)

Environment Requirements:

Environal Humidity:

Operating:0 to 100% RH, non-condensing Storage:0 to 90% RH, non-condensing Environal Temperature Range:

N:Operating -10 °C to 50 °C N:Storage -40 °C to 70 °C

Instrumental Type:

pGas4820-H-OPL(<1)-MP(1-4)	pGas4820-OPL(1-100)- MP(1-8)	HBD7-Gas4821-H-OPL(<1) MP(1-2)
Dispersion sampling;	Pump sampling;	Dispersion sampling;
OPL≤1m;	OPL≤1m, or 30m,100m	OPL≤0.6 m;
Scan range: 50nm;	Scan range: 50nm;	Scan range: 20nm;
	1kw Rechargeable battery,20 more hour	120mAHr Rechargeable battery, 1
hour continuous working supported;	continuous working supported;	more hour continuous working
		supported;
		Safety: Intrinsic

pGas4820-Series Products

Organic Gas Analyzer Special

Model	Professional	Specifications	Application
HBD7-Gas4821	Organic vapor analyzer	1ppm-100% LEL;	Industry analysis;
-H-OPL06-L2250-VOC		LDL<1ppm for most gases	Leakage detection;
		1 specified gases calibration in plant;	Environ analysis;

		128 gases calibration supported	Class 0 area test;
pGas4821 -H-OPL1-L2250-VOC	Organic vapor analyzer	0.1ppm-100% LEL; LDL<1ppm for most gases 1 specified gases calibration in plant; 256 gases calibration supported	Industry analysis; Leakage detection; Environ analysis;
pGas4821 -OPL1-L2250-VOC	Organic vapor analyzer	0.1ppm-100% LEL; LDL<1ppm for most gases 1 specified gases calibration in plant; 256 gases calibration supported	Industry analysis; Leakage detection; Environ analysis;
pGas4821 -OPL30-L2250-VOC	Organic vapor analyzer	0.01ppm-1000ppm; LDL<10ppb for most gases 1 specified gases calibration in plant; 256 gases calibration supported	Industry analysis; Leakage detection; Environ analysis;
HBD7-Gas4821 -H-OPL06-L2300-VOC	Organic vapor analyzer	1ppm-100% LEL; LDL<1ppm for most gases 1 specified gases calibration in plant; 128 gases calibration supported	Industry analysis; Leakage detection; Environ analysis; Class 0 area test;
pGas4821 -H-OPL1-L2300-VOC	Organic vapor analyzer	0.1ppm-100% LEL; LDL<1ppm for most gases 1 specified gases calibration in plant; 256 gases calibration supported	Industry analysis; Leakage detection; Environ analysis;
pGas4821 -OPL1-L2300-VOC	Organic vapor analyzer	0.1ppm-100% LEL; LDL<1ppm for most gases 1 specified gases calibration in plant; 256 gases calibration supported	Industry analysis; Leakage detection; Environ analysis;
pGas4821 -OPL30-L2300-VOC	Organic vapor analyzer	0.01ppm-1000ppm; LDL<10ppb for most gases 1 specified gases calibration in plant; 256 gases calibration supported	Industry analysis; Leakage detection; Environ analysis;
pGas4822 -H-OPL30-L22L23-VOC	Organic vapor analyzer	0.01ppm-1000ppm; LDL<10ppb for most gases 2 specified gases calibration in plant; 256 gases calibration supported	Industry analysis; Leakage detection; Environ analysis;

List of Typical Detectable Gases

*The range data is with 1 m optical path cell, unless other where specified with OL.

*analyzer for unlisted gases might be designed by requirements. Such as Acetylene (C2H2), Allene (CH2CCH2), Ammonia (NH3), Butadiyne (C4H2), Butene (CH2CHCH2CH3), Carbon dioxide (CO2), Carbon disulfide (CS2), Carbon monoxide (CO), Carbon tetrachloride (CCI4), Carbonyl fluoride (COF2), Carbonyl sulfide (COS), Chlorine nitrate (CIONO2), Chlorine oxide (CIO), Chlorosulfonyl isocyanate (CSI) (CISO2NCO), Cyanogen (C2N2), Cyclopropane (C3H6), Dimethyl sulfide (DMS) (H3CSCH3), Dimethyl sulfoxide (DMSO) (H3CSOCH3), Ethane (CH3CH3), Ethylene (C2H4), Formaldehyde (H2CO), Formic acid (HCO2H), Hydrazine (N2H4), Hydrogen (H2), Hydrogen bromide (HBr), Hydrogen chloride (HCI), Hydrogen cyanide (HCN), Hydrogen fluoride (HF), Hydrogen iodide (HI), Hydrogen peroxide (H2O2), Hydrogen sulfide (H2S), Hydroperoxy radical (HO2), Hypobromous acid (HOBr), Hypochlorous acid (HOCI), Isobutene ((CH3)2CCH2), Methane (CH4), Methanesulfonyl chloride (CH3SO2CI), Methanol (CH3OH), Methylamine (CH3NH2), Methyl chloride (CH3CI), Methyl fluoride (CH3F), Methyl mercaptan (CH3SH), Nitric acid (HNO3), Nitric oxide (NO), Nitrogen (N2), Nitrogen dioxide (NO2), Nitrogen oxide cation(NO+), Nitrous oxide (N2O), Oxygen (O), Oxygen (O2), Ozone (O3), Phosphine (PH3), Propane (C3H8), Propylene (C3H6), Propyne (CH3C2H), Sulfur dioxide (SO2), Sulfur hexaflouride (SF6), Sulfuryl chloride (SO2CI2), Sulfuryl flouride (SO2F2), Thiophosphoryl chloride (SPCI3), Water (H2O).

BigDipper Technochem Institute

Call: 010-8264.0226; Fax: 010-8264.0221;

P.o.Box 603 BDTI Beijing, China 100080

Email: sales@fullsense.com suncns@hotmail.com web: http://www.fullsense.com

General Gas Detect Information

Gases	Molecule	S	С	L	L22	L23
Acetylene	C_2H_2	M+	m	W	m	m
Allene	CH ₂ CCH ₂		W	m	m	m
Ammonia	NH ₃	m	m	W	m	m
Benzene						
Butadiyne	C_4H_2	W	W			
Butene	CH ₂ CHCH ₂ CH ₃		W	m	m	m
Carbon dioxide	CO_2	m	W	W	m	m
Carbon disulfide	CS ₂				W	W
Carbon monoxide	CO	m	m	m	m	m
Carbon tetrachloride	CCI ₄					
Carbonyl fluoride	COF ₂	W				
Carbonyl sulfide	cos			W	m	m
Chlorine nitrate	CIONO ₂					
Chlorine oxide	CIO					
Chlorosulfonyl isocyanate(CSI)	CISO ₂ NCO	W	W	W	W	W
Cyanogene	C_2N_2				W	W
Cyclopropane	C_3H_6			W	m	m
Dimethyl sulfide (DMS)	H ₃ CSCH ₃		W	W	m	m
Dimethyl sulfoxide (DMSO)	H ₃ CSOCH ₃					
Ethane	CH ₃ CH ₃			m	m	m
Ethylene	C_2H_4			W	m	m
Formaldehyde	H ₂ CO			W	W	W
Formic acid	HCO ₂ H			••	••	
Hydrazine	N_2H_4	M+	M+	M+	m	m
Hydrogen	H ₂					•••
Hydrogen bromide	HBr				m	m
Hydrogen chloride	HCI				m	m
Hydrogen cyanide	HCN	W	m	W	m	m
Hydrogen fluoride	HF	W		**		•••
Hydrogen iodide	HI	W	m	m	m	m
Hydrogen peroxide	H_2O_2	**		***	***	• • • • • • • • • • • • • • • • • • • •
Hydrogen sulfide	H ₂ S	W	m	m	m	m
Hydroperoxy radical	HO ₂	VV	111	111	111	***
Hypobromous acid	HOBr					
Hypochlorous acid	HOCI					
Isobutene	CH ₃₂ CCH ₂		W	m	m	m
isobuterie	01 132001 12		VV	111	111	***
Methane	CH ₄			w	m	m
Methanesulfonyl chloride	CH ₃ SO ₂ CI			VV	111	***
Methanol	CH ₃ OH	14/	14/	W	m	m
Methylamine	CH ₃ NH ₂	w m	W		m m	
		111	m	W	111	m
Methyl chloride Methyl fluorine	CH₃CI CH₃F	m			m	m
Methyl mercaptan	CH ₃ SH	m	147	147	m	m
Nitric acid	HNO ₃	W	W	W	m	m
Nitric acid Nitric oxide	NO			W	m	m
					m	m
Nitrogen	N ₂			14/	107	10/
Nitrogen dioxide	NO ₂			W-	W-	W-
Nitrogen oxide cation	NO+					
Nitrous oxide	N ₂ O				W	W
Oxygen	0				147	107
Oxygen	O_2		W-	W-	W-	W-
Ozone	O_3				W-	W-
Phosgene	PH ₃				_	
Phosphine	PH ₃				m	W
Propane	C ₃ H ₈	W	W	W	m	m
Propylene	C_3H_6		W	m	m	m
Propyne	CH ₃ C ₂ H		m	W	m	m
Sulfur dioxide	SO_2	W	W	W	W	W
Sulfur hexaflouride	SF ₆	W-			W	W
Sulfuryl chloride	SO_2CI_2					
Sulfuryl flouride	SO_2F_2					

Thiophosphoryl chloride	SPCI ₃				
1 1 2	ш О	\\/		NA. NA.	
Water	H_2O	W	W	IVI+ IVI+	

More Gases Analyzing Datasheet

more Gaese 7 mary 2mg Bataem	1
Gases	
COMPOUND	
ACETALDEHYDE	
ACETIC ACID	
ACETIC ACID	
ACETONE	
ACETONE	
ACETONITRILE	
ACETOPHENONE	
ACETYLENE	
ACRYLONITRILE	
AMMONIA	
AMMONIA	
ANILINE	
BENZALDEHYDE	
BENZENE	
1,3-BUTADIENE	
1,3-BUTADIENE	
BUTANE	
n-BUTYL ACETATE	
n-BUTYL ALCOHOL	
t-BUTYL ALCOHOL	
BUTYL CELLOSOLVE	
t-BUTYL METHYL ETHER	
CARBON DIOXIDE (absolute)	
CARBON DIOXIDE (absolute)	
CARBON DIOXIDE (differential)	
CARBON DIOXIDE (differential)	
CARBON DISULFIDE	
CARBON MONOXIDE	
CARBON TETRACHLORIDE	
CARBON TETRACHLORIDE	
CELLOSOLVE	
CELLOSOLVE	
CELLOSOLVE ACETATE	
CHLOROBENZENE	
CHLOROBROMOMETHANE	
CHLOROFORM	
CHLOROFORM	
CHLOROFORM	
CHLOROFORM	

^{*} m middle absorption,
* w weak absorption;
* - means more weaker than usual

m-CRESOL	
CUMENE	
CYCLOHEXANE	
CYCLOHEXANE	
CYCLOPENTANE	
DESFLURANE	
DESFLURANE	
DESFLURANE	
DESFLURANE	
m-DICHLOROBENZENE	
o-DICHLOROBENZENE	
p-DICHLOROBENZENE	
1,1-DICHLOROETHANE	
1,2-DICHLOROETHYLENE	
DICHLOROETHYLETHER	
DIETHYLAMINE	
DIMETHYLACETAMIDE	
DIMETHYLAMINE	
N,N-DIMETHYLFORMAMIDE	
DIOXANE	
ENFLURANE	
ENFLURANE	
ENFLURANE	
ENFLURANE	
ETHANE	
ETHANOLAMINE	
ETHYL ACETATE	
ETHYL ALCOHOL	
ETHYL BENZENE	
ETHYL CHLORIDE	
ETHYL ETHER	
ETHYL LACTATE	
ETHYLENE	
ETHYLENE DICHLORIDE	
ETHYLENE OXIDE	
ETHYLENE OXIDE	
FORMALDEHYDE	
FORMIC ACID	
GEN HALOCARBONS (Chloroform)	
GEN HALOCARBONS (Chloroform)	
GEN HYDROCARBONS (Hexane)	
GEN HYDROCARBONS (Methane)	
HALOTHANE HALOTHANE	
HALOTHANE	
HALOTHANE	
HEPTANE	
n-HEXANE	

LIVODAZINE	
HYDRAZINE	
ISOBUTANE	
ISOFLURANE	
ISOFLURANE	
ISOFLURANE	
ISOFLURANE	
ISOPROPYL ALCOHOL	
ISOPROPYL ETHER	
METHANE	
METHYL ACETATE	
METHYL ACETATE	
METHYL ACRYLATE	
METHYL ALCOHOL	
METHYL CELLOSOLVE	
METHYL CELLOSOLVE ACETATE	
METHYL CELLOSOLVE ACETATE	
METHYL CHLORIDE	
METHYL CHLOROFORM	
METHYL ETHYL KETONE	
METHYL ETHYL KETONE	
METHYL ISOBUTYL KETONE	
METHYL METHACRYLATE	
METHYL METHACRYLATE	
METHYLACETYLENE	
METHYLAMINE	
METHYLENE CHLORIDE	
NITROGEN TRIFLUORIDE	
NITROUS OXIDE	
OCTANE	
OCTANE	
PENTANE	
PERCHLOROETHYLENE	
PERCHLOROETHYLENE	
PERCHLOROETHYLENE	
PGMEA	
PHOSGENE	
PROPANE	
n-PROPANOL	
PROPYLENE OXIDE	
PYRIDINE	
TRICHLOROMONOFLUOROMETHANE	
TRICHLOROTRIFLUOROETHANE	
TRICHLOROTRIFLUOROETHANE	
1,2-DICHLOROTETRAFLUOROETHANE	
1,2-DICHLOROTETRAFLUOROETHANE	

DICHLORODIFLUOROMETHANE	
DICHLORODIFLUOROMETHANE	
DICHLOROTRIFLUOROETHANE	
DICHLOROTRIFLUOROETHANE	
DICHLOROTRIFLUOROETHANE	
DICHLOROTRIFLUOROETHANE	
1-CHLORO-1,1,2,2-TETRAFLUOROETHANE	
1-CHLORO-1,1,2,2-TETRAFLUOROETHANE	
1-CHLORO-1,1,2,2-TETRAFLUOROETHANE	
1-CHLORO-1,1,2,2-TETRAFLUOROETHANE	
1,1,1,2-TETRAFLUOROETHANE	
BROMOTRIFLUOROMETHANE	
1,1-DICHLORO-1-FLUOROETHANE	
1,1,1-TRIFLUOROETHANE	
1,1-DIFLUOROETHANE	
DICHLOROFLUOROMETHANE	
DICHLOROFLUOROMETHANE	
CHLORODIFLUOROMETHANE	
CHLORODIFLUOROMETHANE	
DICHLOROPENTAFLUOROPROPANE	
SEVOFLURANE	
SEVOFLURANE	
STYRENE	
STYRENE	
STYRENE	
SULFUR DIOXIDE	
SULFUR HEXAFLUORIDE	
SULFURYL FLUORIDE	
TETRAHYDROFURAN	
TOLUENE	
TOLUENE	
TOLUENE	
1,1,2-TRICHLORETHANE	
1,1,2,2-TETRACHLOROETHANE	
TRICHLOROETHYLENE	
TRICHLOROETHYLENE	
VINYL ACETATE	
VINYL CHLORIDE	
VINYL CHLORIDE	
VINYLIDENE CHLORIDE	
XYLENE	
XYLENE	
XYLENE	